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Abstract
Theoretical models of spin-dependent transport in magnetic spin-valves and
tunnel junctions are presented. A general definition of current-induced spin
transfer torque (STT) and interlayer exchange coupling (IEC) based on the
spin density continuity principle is given. We then present an extension of the
Valet and Fert model, based on the Boltzmann description of spin-dependent
transport in metallic structures. This model describes STT and IEC in any
kind of magnetic metallic multilayer, for any orientation of the magnetization
of the ferromagnetic layers. Simulation results show that spin torque and
magnetoresistance originate from the same physical effect. In a second step, we
model STT and IEC in magnetic tunnel junctions with an amorphous insulator,
using the non-equilibrium Keldysh technique. The general features of STT and
IEC are described, showing an important asymmetry in STT bias dependence.
Moreover, the influence of a layer of impurities in the barrier is investigated and
shows an important enhancement of STT and IEC at resonance. Finally, we
apply this model to double magnetic tunnel junctions and show that a dramatic
enhancement of spin torque can be obtained when the conditions of resonance
in the free layer are fulfilled.

1. Introduction

The interaction of flowing electrons with the background magnetization inside a ferromagnet
has been intensively studied for the past two decades, leading to outstanding discoveries such as
giant [1] and tunnelling [2] magnetoresistance. The design of metallic spin-valves (MML) [3]
and magnetic tunnel junctions (MTJ) [4] has greatly improved our knowledge of magneto-
electronic transport, giving rise to a new field of investigation known as ‘spintronics’ [5].
Its effective and potential applications in read-heads [6], RF components [7] or non-volatile
memory (magnetic random access memory (MRAM)) [8] contribute greatly to its popularity in
the scientific community.
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One of the main exciting effects in spintronics is the reciprocal influence of a spin-
polarized current on the background magnetization [9]. This phenomenon, known as
‘spin transfer torque’ (STT), permits the control of the magnetization in a spin-valve-based
nanostructure using only the electrical current flowing through it.

The first insight into spin torque was proposed by Slonczewski in 1989, in his free-electron
model of magnetic tunnel junctions [10]. In this paper, the author analysed the magnetization
response to a spin-polarized electrical current and found that spin current induced a pseudo-
torque on the magnetization. However, energy dissipation and current-induced heating were
expected to hide the pseudo-torque effect. Fortunately, the recent development of e-beam
lithographic processes allowed fabricating submicron devices (MMLs as well as MTJs) in
which the applied current density can be high enough to generate such a torque (provided
that the resistance–area product (RA) remains lower than 10 � μm2).

In 1996, Slonczewski [11] and Berger [12] showed theoretically that an electrical current
flowing through a MML can induce a torque on the background magnetization generating
magnetic excitations and even magnetization switching. Less than 2 years after these theoretical
demonstrations, experimental data confirmed these predictions [13] and brought a number of
exciting results, enriching the physics of spin-dependent transport in both magnetic metallic
multilayers [14–16] and magnetic tunnel junctions [17–19]. These static and dynamic results
led to a large number of theoretical works [20–28] and micromagnetic simulations [29, 30].

In this paper we propose a general study of spin torque and magnetoresistance in magnetic
metallic multilayers and tunnel junctions, in order to reveal the specific features of spin-
dependent transport in such structures. In section 2, we give the definition of spin transfer
torque based on quantum mechanical considerations and we present a general overview of
the different theories of spin transfer torque in MMLs and MTJs. Section 3 deals with the
modelling of spin torque inside MML, using a Boltzmann-based description of the diffusive
transport extended to any kind of multilayer. Section 4 presents a study of spin torque and
current-driven exchange coupling in MTJ with an amorphous barrier, based on the Keldysh
non-equilibrium technique. The influence of a layer of impurities inserted within the insulating
barrier is investigated. In section 5 the previous theory is applied to double magnetic
tunnel junctions (DMTJ) and the influence of quantum states inside the central free layer is
investigated.

2. General overview

2.1. Continuity principle of spin density

The fundamental physics of spin transfer torque is contained in the continuity principle of spin
density which allows the transfer of itinerant-electron spins to the background magnetization
of a ferromagnet. We consider the s–d model in which s-electrons are itinerant and d-electrons
are localized and give rise to the local magnetization of the ferromagnet. This model applies
to the electron structures of ferromagnetic electrodes whose compositions lie on the negative
slope side of the Slater–Néel–Pauling curve (Ni, Co, NiFe, CoFe). Consider an arbitrary two-
dimensional Hartree–Fock wavefunction�(r, t). The two dimensions refer to up (↑) and down
(↓) spin components of the Hartree–Fock wavefunction. Then, the local spin density −→s at the
location r and time t is

−→s (r, t) = �∗(r, t)
h̄

2
−→̂
σ �(r, t) (2.1)

where
−→̂
σ is the Pauli matrix. The time variation of spin density is then:

d

dt
−→s (r, t) = h̄

2

{
d

dt
�∗−→̂σ � +�∗−→̂σ d

dt
�

}
. (2.2)
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Furthermore, the time-dependent Schrödinger equation gives d
dt�(r, t) = − i

h̄ H�(r, t),
where H is the Hamiltonian of the system. Substituting this equation in (2.2) we get:

d

dt
−→s (r, t) = 1

2i
{�∗−→̂σ H� − (H�)∗

−→̂
σ �}. (2.3)

In the non-relativistic limit, the Hamiltonian for itinerant s-electrons in a ferromagnet is
written:

H = p2

2m
− U(r)− Jsd(

−→̂
σ · −→Sd ) (2.4)

where the first and second terms are the kinetic and potential energies, while the third term
is the s–d exchange-energy, with

−→
Sd the local magnetization due to d-electrons and Jsd is the

exchange constant. Equation (2.3) then reduces to [31]:

d

dt
−→s (r, t) = −∇Js(r, t) + Jsd

h̄
−→
Sd × −→s (r, t) (2.5)

where Js = J↑ − J↓ is the spin current in spin space and J↑(↓) is the up- (down-)spin electrical
current. In steady state, (2.5) reduces to [26]:

∇Js(r, t) = Jsd

h̄
−→
Sd × −→s (r, t). (2.6)

Furthermore, we can introduce the spin density variation, given by (2.5), in the macroscopic
equation of motion of total electron magnetizations, known as the Landau–Lifshitz–Gilbert
(LLG) equation:

d
−→
M

dt
= α

−→
M × d

−→
M

dt
− γ

(−→
M × −→

Heff + Jsd

h̄μB

−→
M × −→s (r, t)

)
(2.7)

where
−→
M is the background magnetization of the ferromagnet, γ is the gyromagnetic ratio, α

is the Gilbert damping coefficient, μB is the Bohr magneton and
−→
Heff is the usual effective field.

This fundamental statement is very important for understanding the origin of spin transfer
torque. It shows the equivalence between spin transfer torque and spin current, and implies that
calculating currents in non-collinear structures is necessary and sufficient to determine spin
torque.

2.2. Building transverse spin current

Different models for currents and torques in multilayered structures, MMLs and MTJs, have
been proposed. When reading the very important theoretical literature about spin transfer
torque (see [30] for references), one can distinguish between two main approaches, depending
on the transport mechanism considered, ballistic or diffusive.

2.2.1. Ballistic spin torque. In his first theories, applied to MTJ [10] and MML [11],
Slonczewski considered a quantum-mechanical system in the pure ballistic limit, i.e. neglecting
the electron diffusion and spin-flip. This was fully justified in the case of MTJ but was not
appropriate for metallic spin-valves in which bulk and interfacial spin-diffusion dominate [1].

In this framework, electron scattering and spin accumulation are neglected, as well as the
distinction between electric and electrochemical potentials [32]. The first model applied to
MML led to an angular dependence of spin torque:

−→
T = I

e

1

−4 + (1 + P)3(3 + cos θ)/4P3/2
· −→m × (−→m × −→p ). (2.8)
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Figure 1. Schematics of the mechanism of spin transfer torque in a metallic trilayer. Polarized
electrons flowing from left to right precess around the right layer magnetization with different
frequencies due to their different incident angles at the interface. This results in ballistic interference
yielding an oscillation and damping of spin torque near the interface (typically 1 nm).

Here,
−→
T is the macroscopic torque vector, I is the electrical current, e is the electron

charge, P is the current polarization and −→m and −→p are unitary vectors collinear to the
magnetization of the free and pinned layer, respectively (see figure 1). Applied to a MTJ,
this model leads to a simple sine type angular dependence [21], as found in section 4.

Other ballistic models applied to MTJ have been proposed [33], but the difficulty of
performing such experiments led theoreticians to focus on diffusive models in order to explain
the numerous experimental results obtained in MML.

2.2.2. Diffusive spin torque. In metallic multilayers, electron spin-diffusion plays a dominant
role leading to spin accumulation, which is neglected in the ballistic approach. This spin
accumulation is proportional to the difference of chemical potentials �μ for spin-up and spin-
down electrons and�μ ≈ E ·lsd, where lsd is the spin-diffusion length of the material and E the
electric field applied to the structure. Consequently, in metallic multilayers, spatial variation
of spin accumulation cannot be neglected, which is not the case in magnetic tunnel junctions,
where the drop of potential mainly occurs in the barrier so that �μ can be neglected in the
outer electrodes.

Three main theories, generally equivalent, have been proposed to model spin transfer
torque. The more generally used theory is the Valet and Fert Boltzmann-like approach [32].
The Boltzmann equation describes the evolution of electronic states near the Fermi level. In this
theory, electronic transport is described in terms of currents and electrochemical potentials and
both bulk and interfacial spin scattering contribute to the construction of spin polarization and
spin accumulation [23]. Another approach, which is equivalent to the Boltzmann description,
is the drift-diffusion model employed by Stiles et al [22, 34].

Slonczewski proposed a circuit model in which the spacer resistivity and spin-diffusion are
neglected [20, 35]. This model has been generalized to any kind of MML, including interfacial
spin-flip [36]. The main difference between circuit theory and the Boltzmann approach is that
circuit theory neglects the spatial variation of spin accumulation. Nevertheless, Xiao et al
[34] showed that this circuit theory could be generalized to systems where spin accumulation
is spatially varying and that spin torque results derived from circuit theory were essentially
confirmed by solving the Boltzmann equation in any kind of structure.

In a third approach, Zhang et al [24] showed that the first spin transfer torque predicted by
Slonczewski [11] should be completed by a current-driven interlayer exchange coupling (IEC),

4
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generated by transverse spin accumulation. The relative amplitude of IEC compared to STT is
not yet theoretically stated, however. Recently Kubota et al [37] estimated the IEC amplitude
to be of the order of 10% of the amplitude of spin torque in a MgO-based MTJ. In the rest of
this paper we propose a study of IEC together with STT.

2.2.3. Further theories. To conclude this overview of spin torque theories, we underline the
fact that other theoreticians have worked on current-induced spin-wave emission [25] to explain
the high frequency magnetic excitations found in dynamic experimental investigations.

Furthermore, the reciprocal effect of magnetic excitations generating spin current and vice
versa (also called spin pumping) has been studied by Tsernovnyak et al [28]. We will not
develop these approaches which are outside the scope of this work, and invite the reader to
refer to the references given at the end of this paper.

Finally, we note an interesting recent theoretical work predicting spin transfer in
antiferromagnets [38]. Some preliminary experimental results seem to confirm the existence of
such a phenomenon [61], and further investigations are expected.

3. Spin torque in magnetic metallic multilayers

3.1. Introduction

The detailed semi-classical theory of spin-dependent perpendicular-to-plane (CPP) transport
in multilayered magnetic structures based on the Boltzmann equation was developed in [32]
taking into account both bulk and interfacial spin-dependent scattering. In this model it is
emphasized that when the thickness of the layers is comparable to or larger than spin-diffusion
length, the transport properties of different spin channels cannot be considered as independent
and spin-flip processes have to be taken into account. The model proposed in [32] is restricted
to the structures with collinear configuration of magnetization in the magnetic layers. This
approach was then extended to structures with non-collinear magnetic configuration [24, 39].
Calculation on the basis of this model for a three-layered structure, thick magnetic layer/non-
magnetic layer/tilted thin magnetic layer (see figure 1), has shown that STT is governed by
the spin-dependent transport parameters of the thick layer [40] which creates a polarized spin
current, the spin-dependent bulk and interfacial scattering, and the resistivity and spin-diffusion
length.

The formalism developed in [32, 24, 39] was applied only to particular types of structures,
such as single interface or MML with an infinite number of repeats of the same bilayer.
Later this model was generalized to any multilayered pillar structure with collinear magnetic
configuration [41]. In addition to [32] the scattering at lateral edges of submicron multilayered
pillar was included in the calculation scheme which can be viewed as a current-in-plane effect
intruding in CPP transport. A universal code for numerical calculation of spin-dependent
current and CPP-GMR was developed.

This section presents the further development of all these models for the calculation of
CPP-GMR and spin torque for any multilayered structure and magnetic configuration. The
diffuse electron and spin transport including spin-flip processes was considered on the basis of
the diffusion equation. Following [12, 24] we took into account the four-component character
of the current consisting of charge current and spin current with one component parallel to the
magnetization of the layer considered and two transverse components with the corresponding
accumulation effects. The same asymmetry parameters as in the theory of Levy et al are
involved in the consideration presented here, but in comparison with [39], we also kept the term
responsible for an additional current proportional to the gradient of non-equilibrium electron
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concentration as well as an additional source of spin accumulation associated with the spin-
dependent interfacial resistance. The created code can also be used for calculating the CPP-
GMR and STT in pillar multilayered structures in the framework of the same model, as in [41].

3.2. Diffusive model

The calculation of CPP spin-dependent current and spin torque is based on the diffusion
equation and equation of motion for the spin accumulation, as was done in the Valet–Fert
model [32] and similar models for a MML structure with a non-collinear configuration of
magnetization [12, 24]. Following [12, 24] and a generalized form of [11] for any multilayered
pillar structure [39], we start from the following expressions for the charge j e

n and spin
−→
j m
n

components of the current:

j e
n = Ex

ρn
− D0n

∂n0
n

∂x
− D0nβ

′
(

M x
n

∂mx
n

∂x
+ M y

n

∂m y
n

∂x
+ Mz

n

∂mz
n

∂x

)
(3.1a)

−→
j m
n = βn Ex

−→
Mn

ρn
− D0nβ

′−→Mn
∂n0

n

∂x
− D0n

∂−→mn

∂x
. (3.1b)

In (3.1a) and (3.1b), superscripts x , y and z mean components in spin space, Ex is the
external electric field directed perpendicular to the interfaces of the multilayered structure, n
is the layer index and ρn and D0n are the resistance and diffusion coefficients, respectively.
In the chosen geometry, the x-axis is perpendicular to the plane of the layers.

−→
Mn is the

spontaneous local magnetization, homogeneous inside every magnetic layer but changing from
layer to layer, and we choose

−→
Mn = (M x

n , 0,Mz
n

) = (sin�n, 0, cos�n). Both resistance and
diffusion coefficients are spin-dependent:

1/ρ↑(↓)
n = (1 ± βn) /2ρn

D↑(↓)
n = D0n

(
1 ± β ′

n

)
.

Non-equilibrium electron concentration nn (charge accumulation) is connected with non-
equilibrium magnetization −→mn (spin accumulation) by the relations:

n↑
n + n↓

n = n0
n

n↑
n − n↓

n = |−→mn|.
The coefficients of asymmetry βn, β

′
n are not independent and are related via the

asymmetry coefficient for the electron with up (down) spins density of states: N↑(↓)
n =

1
2 Nn0 (1 ± δn). So, from the Einstein relation 1/ρn = e2 Nn(EF)Dn , it follows that:

D0n = 1 − βnδn

e2ρn Nn0(1 − δ2
n)

D0nβ
′
n = βn − δn

e2ρn Nn0(1 − δ2
n)

β ′
n = βn − δn

1 − βnδn
.

(3.2)

The currents (3.1a) and (3.1b) have to be inserted into the conditions for non-divergent
current components:

∂ j e
n

∂x
= 0

∂
−→
j m
n

∂x
+ J

h̄
[−→mn × −→

Mn] +
−→mn

τnsf
= 0

(3.3)
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where J is the parameter of s–d exchange interaction and τnsf is the spin-flip relaxation time. At
this stage, we should make a comment about (3.3). Recently, Levy et al proposed a Boltzmann-
based model of spin torque in which they introduced a term of spin precession around the
background magnetization. As a matter of fact, in the ballistic regime (see figure 1), one
can show that the transverse spin accumulation decays within a length of 2π/(k↑

F − k↓
F ). In

figure 10, we show the oscillation and damping of spin torque proportional to the transverse
spin accumulation in the case of a magnetic tunnel junction. The oscillation has a period of
2π/(k↑

F − k↓
F ) ≈ 12 Å. However, some authors rejected this term, arguing that in the diffusive

regime it is not possible to consider physical processes which take place in a distance smaller
than the mean free path λ of the electron (the Valet and Fert Boltzmann model applies to
structures where λ 	 lsf). This is the reason why some authors consider that spin transfer
torque occurs at the interface. In this case, the spin transfer is taken as a boundary condition
and spin torque is calculated from the interfacial discontinuity of the spin accumulation [42].
Indeed, for usual ferromagnets, the spin precession time τ , inversely proportional to the
exchange splitting energy Jsd, is of the order of 10−15/Jsd s. For strong ferromagnets, with
high exchange energy (of the order of 1 eV), the precession time is short compared to the
collision time τe = λ/vF ≈ 10−14, where vF is the Fermi velocity. Consequently, in such a
ferromagnet, spin accumulation vanishes within a region where the transport regime is ballistic.
On the other hand, considering weak ferromagnets, the spin accumulation decreases over a
much larger distance where the regime is diffusive. To be convenient, our model should be
restricted to weak ferromagnetic multilayers. The case of strong ferromagnetic layers should
combine both ballistic and diffusive approaches, depending on the spin accumulation decay
length. This combined approach is under investigation.

Let us come back to our calculation. Using (3.1a), (3.1b) and (3.3) we can remove the
unknown n0

n from the system:

∂2n0
n

∂x2
= −β ′

n

(
sin�n

∂2mx
n

∂x2
+ cos�n

∂2mz
n

∂x2

)
. (3.4)

The system can then be written down for −→mn:

D0n
∂2mx

n

∂x2

(
β ′2

n sin2�n − 1
)+ J

h̄
m y

n cos�n + mx
n

τnsf
+ 1

2
D0nβ

′2
n sin 2�n

∂2mz
n

∂x2
= 0

−D0n
∂2m y

n

∂x2
+ J

h̄

(
mz

n cos�n − mx
n sin�n

)+ m y
n

τnsf
= 0

1

2
D0nβ

′2
n sin 2�n

∂2mx
n

∂x2
− J

h̄
m y

n sin�n + mz
n

τnsf
+ 1 − βnδn

ρn

(
β ′2

n cos2�n − 1
) ∂2mz

n

∂x2
= 0.

(3.5)

To find −→mn we perform a unitary transformation of the matrix of coefficients m̂ of the
system (3.5), ˜̂m = R̂−1m̂ R̂, where R̂ is the rotation matrix:

R̂ =
[ cos�n 0 sin�n

0 1 0
− sin�n 0 cos�n

]
. (3.6)

In the local system of coordinates, (3.5) has a very simple form:

−D0n
∂2mx

n

∂x2
+ mx

n

τnsf
+ J

h̄
m y

n = 0

− D0n
∂2m y

n

∂x2
+ m y

n

τnsf
− J

h̄
mx

n = 0

D0n
∂2mz

n

∂x2

(
β ′2

n − 1
)+ mz

n

τnsf
= 0.

(3.7)
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The solution of (3.7) is:

m ′x
n = c1nek1n (x−xn ) + c2ne−k1n (x−xn ) + c3neik2n (x−xn ) + c4nek2n (x−xn )

m ′y
n = i
(
c1nek1n (x−xn ) + c2ne−k1n (x−xn ) − c3nek2n (x−xn ) − c4nek2n (x−xn )

)
m ′z

n = c5nek3n (x−xn ) + c6ne−k3n (x−xn )

(3.8)

where

kn1,2 =
√

1

λ2
nsf

± i
1

λ2
n J

kn3 =
√

1

λ2
nsf

(
1 − β ′2

n

)
λ2

nsf = τnsf D0n

λn J = h̄

J
D0n

and xn is the coordinate of the interface between layers n − 1 and n. Going back to the former
system of coordinates, we have:

mx
n = cos�nm ′x

n + sin�nm ′z
n

m y
n = m ′y

n

mz
n = − sin�nm ′x

n + cos�nm ′z
n

(3.9)

and then after a double integration of (3.4):

n0
n = −β ′

n

(
c5nek3n (x−xn ) + c6ne−k3n (x−xn )

)+ c7n + c8nx . (3.10)

Next, all the coefficients c1n . . . c8n have to be found. Inserting (3.9) and (3.10) in (3.1a)
and (3.1b) and writing down the conditions of equality of currents in the layers n and n + 1,
four recurrent equations for the coefficients cin are obtained. For example:

j e
n = Ex

ρn
− D0nc8n = Ex

ρn+1
− D0n+1c8n+1. (3.11)

One can see from (3.11) that the set of equations for the coefficients c8n may be solved
independently and all these coefficients will be expressed through c80.

To obtain additional equations to complete the system we use the continuity of the current
in the bulk of each layer and through the interfaces. These currents can be expressed through
the difference of chemical potentials in adjacent layers μ↑(↓)

n = μn ± |�−→μn|:

μn = n0
n − δn

−→
Mn · −→mn

N0n
(
1 − δ2

n

)
−−→
�μn =

−→mn − δnn0
n
−→
Mn

N0n
(
1 − δ2

n

) .
(3.12)

The interfacial currents are:

j̃ e
n = μn − μn+1

rn
+

−→γn

rn
.
(−−→
�μn − −−−−→

�μn+1

)
−→̃
j m
n =

−−→
�μn − −−−−→

�μn+1

rn
+

−→γn

rn
(μn − μn+1)

(3.13)

where
−→γn = γn

[−−−→
Mn+1βn+1 + −→

Mnβn

]/ [
βn + βn+1

]
r↑(↓)

n = rn
(
1 ∓ |−→γn |)

8
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Figure 2. Dependence of the spin torque on the coordinate X , perpendicular to the planes of the
layers for the values of parameters depicted in table 1. Spin torque is given for parallel (solid line)
and antiparallel (dotted line) configurations of the pinned layers. 〈T 〉 is the spin torque in the free
layer, averaged over its thickness.

Table 1. Material parameters used in the simulations. The interfacial resistance (r) and interfacial
spin asymmetry (γ ) are introduced for modelling CoFe/Cu interfaces.

ρ r λs f λJ

(μ� cm) β δ (m� μm2) γ (nm) (nm)

CoFe 19 0.55 0.75 40 0.7 15 1
Cu 5 0 0 40 0.7 100

rn is the interfacial resistance between the layers n and n + 1. After some algebra, the resulting
system has the form:

Ân ˆCn+1 = B̂nĈn + R̂n (3.14)

where ˆCn+1 = [c1n . . . c7n]T and Ân , B̂n are 7 × 7 matrices, the explicit form of which is
given in appendix A. To close the system we choose cyclic boundary conditions and take the
constant c70 equal to zero. In addition the spin-dependent reflection from the border of the
pillar is taken into account in the same model as in [39]. After that, for any multilayered stack
and for arbitrary distribution of magnetizations, the system of equations (3.14) can be solved
and the electrical current, CPP-GMR and spin torque proportional to the m y

n component of the
non-equilibrium magnetization can be found. A numerical code was created to this end, and
we discuss some of these results below.

3.3. Results and discussion

To illustrate the dependence of the torque on the parameters of the multilayered spin-valve we
choose the system Cu/CoFe1/Cu/CoFe2/Cu/CoFe3/Cu where CoFe1,3 are pinned layers and
CoFe2 is a free layer. All parameters of the system are tabulated in table 1. In figure 2, we
plot the dependence of spin torque on the coordinate X perpendicular to the plane (Y, Z ) of
the layers. We considered that the magnetizations of all the three ferromagnetic layers are in
one plane, the magnetizations of the pinned layers are collinear (parallel or antiparallel to the
Z -axis) and the magnetization of the free layer has an angle � = 90◦ with the Z -axis. The
resulting torque lies in the Y Z plane. Figure 2, presenting spin torque as a function of the
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Figure 3. The dependence of spin torque in a free layer for the system Cu/CoFe1/Cu/CoFe2/Cu
versus absolute magnetoresistance�R, when varying the thickness t1 (dashed line) or the bulk spin
asymmetry β1 (dotted line) of the first layer.

1.0

θ

Figure 4. Normalized resistance for the system Cu/CoFe1/Cu/CoFe2/Cu versus the angle between
magnetizations of the two ferromagnetic layers (dashed line). The solid line is a fit with the
phenomenological formula Rnorm = [1 − cos2 �

2 ]/ [1 + χ cos2 �
2

]
with χ = 2.71.

location along the structure, shows that the value of the torque acting on the free layer and
averaged over the thickness of this layer is greatly enhanced in the antiparallel orientation of
magnetizations of the pinned layers [59].

Now it is interesting to investigate the connection between spin torque and absolute
magnetoresistance. So in the system Cu/CoFe1/Cu/CoFe2/Cu we changed the values of the
thickness of the first ferromagnetic layer and spin asymmetry parameters β1 to calculate spin
torque in the free layer and �R = R(π) − R(0). The plot in coordinates T,�R is presented
in figure 3 (varying the thickness of CoFe1 (dashed line) or the bulk spin asymmetry β1 (dotted
line)). These dependences almost coincide with a straight line (solid line).

In the system Cu/CoFe1/Cu/CoFe2/Cu, we investigated the dependence of the
torque acting on the layer CoFe2 and of the normalized resistance Rnorm(�) =
[R(�)− R(0)] / [R(π)− R(0)] on the angle � between the magnetizations of the layers
CoFe1 and CoFe2. The results are presented in figures 4 and 5. We found that Rnorm(�) is

10
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Figure 5. Torque on the free layer magnetization in the system Cu/CoFe1/Cu/CoFe2/Cu versus
the angle between magnetizations of the two ferromagnetic layers (dashed line). The solid line is
a fit with the phenomenological formula T norm = T ∗ sin�/

[
1 + χ cos2 �

2

]
with χ = 2.71 and

T ∗ = −405 Oe.

described by the phenomenological expression Rnorm(�) = [1 − cos2 �
2

]
/
[
1 + χ cos2 �

2

]
,

where χ = 2.71. The dependence of torque T norm(�)/T ∗ was found to be described as
T norm(�)/T ∗ = sin�/

[
1 + χ cos2 �

2

]
with the same value of χ . Our conclusion is that GMR

and torque have the same origin. We have to note that our value of χ = 2.71 is much closer
to the experimentally observed χ = 1.17 for the system Py(t)/Cu(20 nm)/Py(t) [62] than χ
estimated in the theory [39] for the infinitely thick Co layer.

4. Spin torque in magnetic tunnel junctions

4.1. Introduction

Spin-dependent transport in magnetic tunnel junctions presents significant differences from
metallic multilayers. Tunnelling transport is mainly ballistic (tunnel conductances essentially
depend on the interfacial densities of states), whereas transport in metallic multilayers is most
often diffusive. Since the first magnetoresistive effect observed in MTJ by Julliére [43],
tremendous progresses in the preparation and understanding of the properties of these systems
were achieved. Tunnel magnetoresistance amplitudes (TMR) as high as 400% are now
measured at room temperature. Understanding spin torque in MTJs is of both fundamental
interest and a great challenge for MRAM applications. Spin torque has been previously studied
in low RA (resistance–area product) amorphous AlOx -based MTJs [17, 18] and is under
investigation in crystalline MgO-based MTJs [37]. We propose here a free-electron model
based on the non-equilibrium Keldysh formalism [52] which is suitable for amorphous types
of barriers (AlOx,SiOx) in which tunnelling of s-like electrons is dominant.

Although many theories have been proposed to explain tunnel magnetoresistance in
magnetic tunnel junctions, with amorphous [43, 10, 4, 45] or crystalline barriers [46, 47], with
or without impurities [48–50], only very few models have addressed the spin transfer torque in
such structures [21, 51, 63, 64]. The work carried out by Kalitsov et al [51] proposed a first
approach to spin torque in a perfect magnetic tunnel junction with an amorphous barrier, using
the Keldysh formalism. The authors showed the equivalence of calculating spin torque from
the point of view of spin current divergence on the one hand and from the point of view of
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Figure 6. Schematics of a magnetic tunnel junction composed of two semi-infinite ferromagnetic
electrodes separated by an amorphous barrier located between x1 and x2. The figure shows the
split conduction bands for up- (grey arrow) and down-spins (black arrow) in the case of a parallel
configuration.

the out-of-equilibrium magnetization on the other hand (see (2.5)). The model developed here
is based on the same non-equilibrium technique but presents wider studies of spin torque and
TMR in clean MTJs. The influence of resonant states on TMR, STT and IEC when inserting a
layer of impurities within the barrier is also studied.

Our approach presents two main differences compared to Slonczewski’s model [21]: first,
torques are calculated from the out-of-equilibrium magnetization, which allows to directly
estimate the current-driven exchange coupling (‘out-of-plane torque’ TR⊥ in [21]), which is
more complicated to obtain in Bardeen’s Transfer Matrix formalism. Then, whereas [21] is
restricted to tunnelling electrons located at the Fermi energy, we consider the contribution of
all the electrons below the Fermi level. This second point will be important when considering
impurities in the barrier. Most of the results presented here are consistent with the study of
Theodonis et al [63], in which the authors used a tight-binding approach of tunnelling transport.

4.2. Theoretical framework

4.2.1. MTJ without impurities. We consider a magnetic tunnel junction composed of
FL/I/FR , where FL(R) is the semi-infinite left (right) ferromagnetic electrode and I is a non-
magnetic amorphous insulator, such as Al2O3. The magnetizations

−→
ML and

−→
MR of FL and FR

respectively, have an angle θ = cos−1
[−→

ML · −→MR

]
between them. We attribute the spin-space

coordinate system (x, y, z) and (x ′, y, z′) to the left and right ferromagnets, respectively, where
z and z ′ are the quantization axes and x is perpendicular to the plane of the layers (see figure 6).

The current-induced effective local magnetization (spin accumulation) in FL is denoted−→m = (mx,m y,mz), where the transverse components are mx = 〈σ x 〉 and m y = 〈σ y〉. σ i are
the Pauli spin matrices and 〈 〉 denotes the average over orbital states and spin states, i.e. the
average over electrons of energy E , transverse momentum −→κ and spin states s. The transverse
effective local magnetization in the left ferromagnet is then given by 〈σ+〉 = 〈σ x + iσ y〉. Thus
〈σ x 〉 is oriented along the x-axis and induces the current-driven exchange-coupling torque,
whereas 〈σ y〉 is oriented along the y-axis and induces the current-induced spin transfer torque.
In other words, STT is given by the imaginary part of 〈σ+〉, while IEC is given by its real part:

mx + im y = 〈σ+〉 =
〈
(�↑ �↓ )

(
0 2
0 0

)(
�∗↑
�∗↓

)〉
= 2〈�↑�∗↓〉 (4.1)
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where � = (�↑,�↓) is the Hartree–Fock spinor wavefunction. In our model, no diffusion
is considered in the ferromagnetic electrodes and spin torque originates only from ballistic
mechanism associated with interferences between direct tunnelling and reflected polarized
electrons in the ferromagnets. Considering spin-flip within the electrodes is expected to
introduce a faster damping of spin torque within the electrodes but will not alter fundamentally
the results discussed in this section. As discussed in section 3, formally, this model is restricted
to MTJs with electrodes thinner than their mean free path λ. To determine the spin-up and
spin-down components of the Hartree–Fock wavefunction � = (�↑,�↓), we use the non-
equilibrium Keldysh formalism [52, 53]. In the Keldysh formalism, the right-hand-side of
(4.1) corresponds to the Keldysh Green function G−+

↑↓ , which is written as:

G−+
↑↓ (r, t, r′, t ′) = −i〈�↑(r, t)�∗↓(r′, t ′)〉 (4.2)

where r, t (r′, t ′) are the location and instant of the considered state, and � is written in the
Heisenberg formalism. In our case, after introducing a Fourier transform (to replace of the time
variable t by the electron energy variable E), (4.2) gives:

G−+
↑↓ (r, r′) =

∫
dε
{

fL [�↓(↑)∗
L (r′)�↑(↑)

L (r)+�
↓(↓)∗
L (r′)�↑(↓)

L (r)]
+ fR[�↓(↑)∗

R (r′)�↑(↑)
R (r)+�

↓(↓)∗
R (r′)�↑(↓)

R (r)]} (4.3)

where fL = f 0(ε) and fR = f 0(ε + eV ), and f 0(ε) is the Fermi distribution at 0 K, ε =
EF − E and E is the tunnelling electron energy. In the Keldysh description,�↓(σ )∗

i (r)�↑(σ )
i (r)

describes the contribution to the torque at the location r of an electron originally (i.e. at
t = −∞) in reservoir i with a spin state σ . Then, if an electron initially in the state σ
gives a contribution to both the up-spin and the down-spin after propagation (the electron
precesses around

−→
Sd so that �↓(σ )∗

i (r) and �↑(σ )
i (r) are non-zero), it induces a local effective

magnetization and so exerts a torque on the background magnetization
−→
Sd . Otherwise, if it

remains in a pure spin state (up or down), it does not induce any torque.
In an inhomogeneous structure, it is more convenient to use the mixed-coordinate system

(x −−→κ ), where −→κ is the momentum parallel to the plane and x is the coordinate perpendicular
to the plane. With r = (x,−→ρ ), we get:

G−+
↑↓ (r, r′) = a2

0

2π

∫ 2
√
π/a0

0
ei−→κ (

−→ρ −
−→
ρ ′
)G−+

↑↓ (x, x ′) d−→κ . (4.4)

The usual wavefunctions are determined quantum mechanically, using the WKB
approximation following the usual procedure and solving the Schrödinger equation for Hartree–
Fock spinor � = (�↑,�↓):

H� =
(

p2

2m
− U − Jsd(

−→σ · −→
Sd )

)(
�↑
�↓

)
= E

(
�↑
�↓

)
(4.5)

−→
Sd is the local magnetization of d-electrons in the ferromagnetic layer (FL or FR), −→σ is the
vector in the Pauli matrix space: −→σ = ( σ y

σ z

)
, E is the electron energy, U is the spin-independent

potential across the entire junction, so that:

(−→σ · −→
Sd ) = Sdσz and U = EF for x < x1

(−→σ · −→
Sd ) = 0 and U(x) = U0 − x − x1

x2 − x1
eV for x1 < x < x2

(−→σ · −→
Sd ) = Sd(σz cos θ + σy sin θ) and U = EF − eV for x > x2.

Solving (4.5) allows us to obtain spin-dependent wavefunctions in each layer and,
consequently, currents, IEC and STT as explained above. The spin-dependent wavefunctions
are given in appendix B.
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4.2.2. MTJ with impurities. A layer of impurities is now inserted within the insulating barrier
of the MTJ. Each impurity is modelled as a local perturbation represented by a localized
potential in the form W (r) = Wδ(r− r0). r0 = (x0, ρ0) is the spatial location of the impurities
within the barrier and W the amplitude of their potential expressed in Å

−1
. The equivalent

energy of the impurity in eV is Ei = h̄2W/2ma0, where a0 is the lattice parameter of the
barrier. The impurities are randomly distributed in the plane x = x0 parallel to the interfaces
of the trilayer. In the spin-space representation, W is a 2 × 2 matrix, and in Keldysh formalism
it is represented by a 4 × 4 matrix in the form W · σ z , where σ z is the Pauli matrix.

We consider the case of low impurity concentration in the tunnel barrier, which means low
coupling between impurities. This leads to a diagonal representation of the impurity matrix
energy in spin-space:

W (r) = Wδ(r − r0) =
(

W↑ 0
0 W↓

)
.

Thus, in the Keldysh formalism:

W =
⎛
⎜⎝

W↑ 0 0 0
0 W↓ 0 0
0 0 −W↑ 0
0 0 0 −W↓

⎞
⎟⎠ .

In the case of a low concentration of impurities in the layer, it is sufficient to find the
Green function for a single impurity considering the contribution of all impurities as additive.
In this case, the Keldysh non-equilibrium perturbation technique gives rise to the expression
for transverse effective local magnetic moment:

G−+
↑↓ (r, r′) = G−+

0↑↓(r, r′)− G−+
0↑↑(r, r0)W

↑G++
0↑↓(r0, r′)− G−+

0↑↓(r, r0)W
↓G++

0↓↓(r0, r′)

+ G−−
0↑↑(r, r0)W

↑G−+
↑↓ (r0, r′)+ G−−

0↑↓(r, r0)W
↓G−+

↓↓ (r0, r′) (4.6)

where Gα
0 are the Keldysh, retarded and advanced Green functions evaluated without

perturbation, given in appendix C. Using the usual relations G++ = −G A + G−+ and
G−− = G R + G−+ [52], where G A and G R are the advanced and retarded Green functions,
we obtain:

G−+
↑↓ (r, r′) = G−+

0↑↓(r, r′)+ G−+
0↑↑(r, r0)W

↑G A
0↑↓(r0, r′)+ G−+

0↑↓(r, r0)W
↓G A

0↓↓(r0, r′)

+ G R
0↑↑(r, r0)W

↑G−+
↑↓ (r0, r′)+ G R

0↑↓(r, r0)W
↓G−+

↓↓ (r0, r′). (4.7)

By the same procedure, we eliminate G−+
↑↓ (r0, r′) and G−+

↓↓ (r0, r′) from (4.7). This
procedure gives an expression for G−+

↑↓ (r, r′) as a function of non-perturbed Green functions
G0(r, r′).

Finally, in the mixed-coordinate system, the transverse effective local magnetic moment
is:

G−+
↑↓ (x, x) = G−+

0↑↓(x, x)+ c
[
G−+

0↑↑(x, x0)W
↑G A

↑↓(x0, x)+G−+
0↑↓(x, x0)W

↓G A
↓↓(x0, x)

+ 1

Den

{[
W↑G R

0↑↑(x, x0)(1 − W↓G R
0↓↓(r0, r0))

+ W↑W↓G R
0↑↓(x, x0)G

R
0↓↑(r0, r0)

]
× [G−+

0↑↓(x0, x)+ W↑G−+
0↑↑(r0, r0)G

A
↑↓(x0, x ′)+ W↓G−+

0↑↓(r0, r0)G
A
↓↓(x0, x)

]
+ [W↓G R

0↑↓(x, x0)(1 − W↑G R
0↑↑(r0, r0))+ W↑W↓G R

0↑↑(x, x0)G
R
0↑↓(r0, r0)

]
× [G−+

0↓↓(x0, x)+W↑G−+
0↓↑(r0, r0)G

A
↑↓(x0, x)+W↓G−+

0↓↓(r0, r0)G
A
↓↓(x0, x)

]}]
(4.8)
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where c is the impurity concentration and

Den = [1 − W↑G R
0↑↑(r0, r0)

]× [1 − W↓G R
0↓↓(r0, r0)

]− W↑W↓G R
0↑↓(r0, r0)G

R
0↓↑(r0, r0)

Gα
σσ ′(r0, r0) = a2

0

2π

∫ 2
√
π/a0

0
Gα
σσ ′(x0, x0)κ dκ.

This denominator appears when replacing G−+
↑↓ (r0, r′) and G−+

↓↓ (r0, r′) by their
expressions as a function of the non-perturbed Green functions. The determination of the non-
perturbed Green function is performed solving the Dyson equation of the MTJ:

(E − H )G(r, r′) = δ(r − r′) (4.9)

where H is the Hamiltonian of the structure (see (4.5)) and G(r, r′) is the 2 × 2 Green
function matrix in spin space. The non-perturbed and perturbed Green functions are given
in appendices C and D, respectively.

4.2.3. Currents and torques. Spin transfer torque and interlayer exchange coupling can now
be determined from (4.8), whereas spin-dependent electrical currents are calculated from the
usual local definition:

mx + im y = Jsd

μB
〈σ+〉 = Jsd

μB

a3
0

(2π)2

∫ ∫
G−+

↑↓ (x, x, ε)κ dκ dε (4.10)

mz = Jsd

μB

a3
0

(2π)2

∫ ∫ [
G−+

↑↑ (x, x, ε)− G−+
↓↓ (x, x, ε)

]
κ dκ dε (4.11)

J↑(↓) = h̄e

4πm

∫ ∫ [
∂

∂x
− ∂

∂x ′

]
G−+

↑↓ (x, x ′, ε)|x=x′κ dκ dε (4.12)

J = J↑ + J↓ (4.13)

where J↑(↓) is the spin-up(-down) electrical current. G−+
↑↑ (x, x, ε) and G−+

↓↓ (x, x, ε) are the
energy-resolved local density-of-states (LDOS) for up- and down-spins respectively, whereas∫

G−+
↑↑ (x, x, ε) dε and

∫
G−+

↓↓ (x, x, ε) dε give the number of up- and down-electrons at the
location x along the structure.

It is clear that due to the s–d exchange interaction, to the non-collinearity of the d-electron
magnetization

−→
Sd and to the non-equilibrium magnetization of the s-electrons, an additional

torque
−→
T appears which acts on the magnetization of the layer. This torque may be written as

−→
T = −γ

[−→
Sd × −→m

]
(4.14)

where the non-equilibrium magnetization −→m is evaluated from (4.10) and (4.11). In the
following, we will assume that

−→
Sd has only z and x components not equal to zero. The non-

equilibrium magnetization −→m has all its three components different from zero. The mx term
yields an additional exchange between the magnetizations of the free and pinned layers, as
already discussed by Slonczewski [10], and m y is responsible for the new type of torque which
acts as a damping or antidamping term in the LLG equation (2.7).

4.3. Results: no impurities in the barrier

In the following, the material parameters taken for the simulations are as follows: k↑
F =

1.1 Å
−1

, k↓
F = 0.6 Å

−1
are the spin-up and spin-down Fermi wavevectors, respectively, in

the ferromagnets; the height of the barrier is U − EF = 2.44 eV (q0 = 0.8 Å
−1

is the
insulator wavevector) and its thickness is d = x2 − x1 = 7 Å. The bias voltage applied to
the junction is denoted as Vb. The effective electron mass is set to 1 for simplicity. However,
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Figure 7. Tunnel magnetoresistance versus bias voltage Vb. The parameters of the ferromagnetic

electrodes are k↑
F = 1.1 Å

−1
, k↓

F = 0.6 Å
−1

, the barrier height is U = 2.44 eV and its thickness is
d = 7 Å.

to fit experimental results, we will have to consider that the electron mass in the insulator is
smaller than the electron mass in the electrodes [54]. In the following, we evaluate STT and
IEC in the left ferromagnet for a positive voltage. To evaluate these quantities at negative bias
voltage, it is equivalent to calculate them in the right electrode for positive bias, since the MTJ
is symmetric.

Positive bias means that electrons flow from the left to the right electrode, whereas at
negative bias, electrons flow from the right to the left electrode.

4.3.1. Currents and TMR. Figure 7 shows the bias dependence of tunnel magnetoresistance.
The TMR shows the usual decay and an inversion at high bias voltage. This decrease is
attributed to the bias dependence of the interfacial polarization factors [55]. The inversion
of TMR has been observed experimentally [56] and is attributed to a bias dependence of the
coupling between ferromagnetic states.

The tunnel conductivity increases much more quickly with bias voltage in an antiparallel
configuration (AP) than in a parallel configuration (P). The bias voltage at which the
conductivity in AP exceeds the conductivity in P can be estimated from the coherent tunnelling
coefficient [55]:

D(ε, κ, V ) = q(ε, κ, V )2 − k↑(ε, κ, V )k↓(ε, κ, V )

where q is the barrier wavevector and k↑(↓) is the up (down)-spin wavevector at the interface.
Figure 8 shows the bias dependence of spin-up (black) and spin-down (grey) currents for

positive voltage. It can be seen that at low bias, down-spin current in the AP configuration
exceeds down-spin current in the P configuration, and around Vb = 0.48 V it reverses.
However, the up-spin current in the P configuration first exceeds up-spin current in the AP
configuration and then, around Vb = 0.95 V, the up-spin current in AP exceeds the up-spin
current in P. Furthermore, the up-spin current is always higher than the down-current. Globally,
for a particular bias voltage, electrical current becomes higher at high bias voltage in the AP
configuration than in the P configuration.

4.3.2. Torques in MTJ. The angular dependence of IEC and STT is investigated first. At
fixed bias and fixed location in the left ferromagnetic layer, we calculated IEC and STT as a
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Figure 8. Spin-up (black line) and spin-down (grey line) currents versus bias voltage Vb in parallel
(dotted line) and antiparallel (solid line) configuration. The parameters are the same as in figure 7.

Figure 9. Angular dependence of IEC (black lines) and STT (grey lines) at z = −6 Å, with
Vb = 0 V (solid lines) and Vb = 1 V (dotted lines). The parameters are the same as in figure 7.

function of the angle θ between the magnetizations of the left and right ferromagnets. The
plot is reported in figure 9. This figure shows that STT vanishes at zero bias, contrary to IEC,
and both IEC and STT present an angular dependence in the form STT, IEC = α sin(θ). The
deviation from this form is lower than 10−4, so a sine curve is a good approximation. In the
following we estimate spin torque and coupling at θ = 90◦.

We then calculated the x dependence of spin transfer torque and exchange coupling in the
left ferromagnetic layer for a fixed bias voltage (Vb = 1 V). Spin torque is represented by
a black line in figure 10. The oscillating and damping behaviour illustrates the interferences
between tunnelling and reflected electrons, with an oscillation period of T = 2π/(k↑

F −k↓
F ). The

dotted line shows the averaged spin torque as a function of the thickness of the left ferromagnet
STTave = ∫ x

x1
STT(x ′) dx ′/(x1 − x). We find an important averaged STT in the first nanometre

from the interface, then spin torque decreases and reaches zero around x1 − x = 20 nm. We
have to remember that the ballistic assumption holds within a distance from the interface equal
to the mean free path λ of the ferromagnet (typically λ ≈ 5 nm in Co). Anyway, the averaged
spin torque is nearly zero at a thickness of 5 nm, so diffusion has no impact here.
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Figure 10. Spin transfer torque (solid line) versus location in the left ferromagnet calculated at
Vb = 1 V and corresponding averaged spin transfer torque (dotted line) versus thickness of the left
ferromagnet. The parameters are the same as in figure 7.

Figure 11. Interlayer exchange coupling versus location in the left ferromagnet calculated at
Vb = 0 V (grey line) and Vb = 1 V (black line). The parameters are the same as in figure 7.

Similarly, in figure 11 we evaluated IEC in the left ferromagnet at Vb = 0 V (grey curve)
and Vb = 1 V (black curve). The oscillations of IEC versus location exhibit a single period at
zero bias. However, when applying a bias voltage, Vb = 1 V, a beating appears with periods of
the oscillations equal to T1 = 2π/(k↑

F − k↓
F ) and T2 = 2π/(k↑

F + k↓
F ) which correspond to the

two interference frequencies, as expected.
Figure 12 shows the x dependence of IEC, and its averaged value IECave =∫ x

x1
IEC(x ′) dx ′/(x1 − x). We find that the averaged exchange coupling oscillates as a function

of x but decays within the first nanometre in the layer, as for STT. Nevertheless, averaged IEC
remains higher than averaged STT, as shown in figure 13.

We also plotted the bias voltage dependence of the spin transfer torque and interlayer
exchange coupling in figure 14. An important asymmetry appears for STT, consistently with
Slonczewski’s work [21].

Furthermore, STT reverses around Vb = 1.33 V and IEC, which remains negative as a
function of bias, is about two to four times higher than STT. We can compare this behaviour
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Figure 12. Interlayer exchange coupling versus location in the left ferromagnet calculated at
Vb = 1 V (solid line) and corresponding averaged interlayer exchange coupling (dotted line) versus
thickness of the left ferromagnet. The parameters are the same as in figure 7.

Figure 13. Comparison between averaged IEC (dotted line) and averaged STT (black line) as a
function of the layer thickness. The parameters are the same as in figure 7.

with the situation shown in figure 15, where the height of the barrier is lower and set to
U − EF = 1 eV. This time, STT still shows an important asymmetry, but does not reverse (even
at higher voltage) and IEC shows a linear bias dependence for low voltage and reverses for
negative bias. This time, both STT and IEC increase compared to the case of a high barrier and
IEC can be two orders of magnitudes higher than STT. Effective mass also plays an important
role in the bias dependence and the ratio between STT and IEC.

We now focus on the asymmetry of STT as a function of bias, with is of great interest for
experimentalists. Figures 16 and 17 shows the absolute value of STT versus bias voltage for
U − EF = 2.44 eV and 1 eV, respectively. We find that STT is always higher at negative bias,
where the main contribution to spin torque comes from direct tunnelling electrons.

This asymmetry has been attributed by Slonczewski [21] to the bias dependence of the
spin-dependent interfacial density of states (DOS). Indeed, in a very simple approach, STT
in the left layer is proportional to the spin polarization in the right layer, and so to the DOS
of the right electrode. Moreover, the interfacial spin-dependent DOS in the right electrode
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Figure 14. Spin transfer torque (solid line) and interlayer exchange coupling (dotted line), averaged
on 1 nm, versus bias voltage Vb. The barrier height is set to U − EF = 2.44 eV.

Figure 15. Spin transfer torque (solid line) and interlayer exchange coupling (dotted line), averaged
on 1 nm from the interface, versus bias voltage Vb. The barrier height is set to U − EF = 1 eV.

strongly depends on positive bias voltage but only weakly on negative bias voltage. Then,
STT should be asymmetric in voltage. This idea is illustrated by the calculations shown in
figure 18. The bias dependence of left (solid line) and right (dotted line) interfacial polarizations
P = [D↑(EF)− D↓(EF)

]
/
[
D↑(EF)+ D↓(EF)

]
, where D↑(↓)(EF) is the up- (down-) spin

interfacial DOS at Fermi energy. The left interfacial DOS (and thus spin polarization) depends
only weakly on positive bias, whereas the right interfacial DOS depends strongly on it.

4.3.3. Linear relationship. Figure 19 (figure 20) shows the variation of spin torque versus
absolute TMR (defined as �J = JP − JAP) when varying the barrier thickness d (height
q0). A clearly linear relationship is found in both figures. It can also be seen that this linear
slope extrapolates to zero when absolute TMR goes to zero [57]. The top (bottom) insets of
figures 20 and 19 show the variation of absolute TMR (spin torque) versus barrier height and
barrier thickness, respectively. However, as shown in the left part of the slope in figure 19, this
relation is no longer true at smaller values of spin torque (namely, for thick barriers).

Similarly to section 3, this linear dependence means that spin torque and magnetoresistance
have the same physical origin, i.e. spin polarization.
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Figure 16. Magnitude of spin transfer torque as a function of absolute bias calculated in the left
ferromagnet and averaged on 1 nm from the interface, for positive (solid line) and negative (dotted
line) bias voltage. The barrier height is set to U − EF = 2.44 eV.

Figure 17. Magnitude of spin transfer torque as a function of absolute bias calculated in the left
ferromagnet and averaged on 1 nm from the interface, for positive (solid line) and negative (dotted
line) bias voltage. The barrier height is set to U − EF = 1 eV.

4.4. Results: barrier with impurities

4.4.1. Impurity-induced resonance. The introduction of a layer of impurities in the barrier
creates a quantum well with an energy depth (evaluated from the top of the insulating barrier)
of Ei = h̄2W/2ma0. The location of the impurity in the barrier is given by x0 ∈ [x1, x2]. The
concentration of the impurities randomly distributed in the plane parallel to the plane of the
structure is c = 3%, so that we can neglect the coupling between impurities.

In (4.8), the denominator Den is a function of the electron energy E and of the amplitude
of the impurity potential W , so it can reach the minimum (almost zero value) for a given
electron energy E (for example EF) at some value of W . Figure 21 shows the impurity
energy dependence of the inverse absolute value of the denominator at E = EF. It shows a
sharp resonance peak for a particular value of impurity energy. Figure 22 shows the intensity
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Figure 18. Left (solid line) and right (dotted line) interfacial current polarization versus bias voltage.
The barrier height is set to U − EF = 1 eV.

Figure 19. Spin torque versus absolute TMR when varying the barrier thickness. The top (bottom)
inset shows the absolute TMR (spin torque) versus the barrier thickness. The barrier height is set to
U − EF = 2.44 eV.

of 1/|Den| together with the resonance impurity energy as a function of the location of the
impurity layer in the barrier. These values were calculated for a bias voltage of Vb = 1 V, a
barrier height of U − EF = 2.44 eV and a barrier thickness of d = 7 Å. It can be seen that
the maximum of resonance is reached when the impurity layer is inserted close to the middle
of the barrier. The small shift from the middle of the barrier is due to the applied bias voltage
which breaks the MTJ symmetry.

This resonance induces a peak in the spin transfer torque and current-driven interlayer
exchange coupling which is reported in figure 23. This simulation was done at Vb = 1 V and
x0 = −2 Å. A sharp peak in STT appears around ER = −5.133 eV. It is interesting to note
that at this point the IEC changes its sign. One must remember that STT ∝ Im(〈σ+〉) and
IEC ∝ Re(〈σ+〉) and it is possible to express 〈σ+〉 near the resonance as

〈σ+〉 = 1

(W − WR)+ iα
. (4.15)
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Figure 20. Spin torque versus absolute TMR when varying the barrier height. The top (bottom)
inset shows the absolute TMR (spin torque) versus the barrier height. The barrier thickness is set to
x2 − x1 = 7 Å.

Figure 21. Absolute inverse denominator 1/|Den| as a function of the impurity energy. We use
x0 = −2 Å, Vb = 1 V, U − EF = 2.44 eV and d = 7 Å. We set κ = 0 and ε = 0.

This expression can be obtained from 4.8 neglecting the G↑↓ terms near the resonance. It is
immediately clear that STT and IEC stand, respectively, for the dissipative and conservative part
of 〈σ+〉 and this explains the above mentioned behaviour. A more accurate study of resonance
of STT and IEC will be addressed below.

To evaluate the influence of this resonance on spin torque and exchange coupling, we
investigate the dependence of STT and IEC on the location in the left layer. Figure 24 shows the
influence of impurity-induced resonance on the oscillating behaviour of STT in the left layer. A
convenient way to measure the influence of the impurity resonance is to investigate its influence
on the averaged spin torque (see figure 25). It can be seen that spin torque is enhanced by a
factor of 40 within the first nanometre, when the impurity is located at x0 = −1.5 Å. Moreover,
the closer to the middle of the barrier (x0 = 0 Å) the impurity is, the higher the spin torque (see
figure 22).

The dependence of spin torque on the bias voltage for different locations of the impurity
layer, in figure 26, shows an important enhancement. For example, without impurities, at

23



J. Phys.: Condens. Matter 19 (2007) 165212 A Manchon et al

Figure 22. Intensity (solid line) and impurity resonance energy (dotted line) versus location of the
impurity inside the barrier, calculated at Vb = 1 V, U − EF = 2.44 eV and d = 7 Å.

Figure 23. Current-driven interlayer exchange coupling (dotted line) and spin transfer torque (solid
line) versus impurity energy. We use x0 = −2 Å, Vb = 1 V, U − EF = 2.44 eV and d = 7 Å.

Vb = 2 V, Je = 1.97 × 104 A cm−2 and STT = 2.36 Oe, whereas with an impurity located
at x0 = −2 Å (green curve in figure 26), Je = 5.5 × 105 A cm−2 and STT = 169 Oe. This
comparison shows that the role of impurity resonance is not only to increase the current flowing
across the junction: it has a more fundamental impact on spin-polarized current.

This is illustrated by figure 27, where the absolute tunnel magnetoresistance (�J =
JP − JAP) is plotted as a function of the impurity energy. It shows a peak corresponding
to the maximum of spin torque. However, the energy resonance for TMR (≈5.1 eV) is not
exactly the energy resonance of STT (≈5.133 eV). Tsymbal et al [48] proposed interesting
studies of impurity-induced TMR resonance in a MTJ. We notice that compared to TMR
without impurities, the TMR calculated at STT resonance (Ei = −5.133 eV) is lower below
Vb = 1.2 V, then exceeds TMR without impurities above 1.2 V (see figure 28).

A preliminary understanding of the origin of STT resonance is given by the impurity
energy dependence of the spin-dependent electrical current at θ = 90◦, shown in figure 29.
This figure shows an important enhancement of the total current around ER , but also shows
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Figure 24. Spin transfer torque versus location in the left ferromagnet: (solid line) without
impurities, (dotted line) x0 = −2.5 Å at resonance, (dashed–dotted line) x0 = −2 Å at resonance,
(dashed line) x0 = −1.5 Å at resonance. The calculation have been perform at Vb = 1 V.

Figure 25. Average spin transfer torque versus location in the left ferromagnet: (solid line) without
impurities, (dotted line) x0 = −2.5 Å at resonance, (dashed–dotted line) x0 = −2 Å at resonance,
(dashed line) x0 = −1.5 Å at resonance. The calculations have been performed at Vb = 1 V.

that spin-down electrical current exceeds spin-up electrical current and reaches a maximum at
the resonance energy ER . This means that in the magnetic configuration for which we calculate
STT, the transverse spin asymmetry is maximum at impurity resonance.

4.4.2. Spin-dependent density of states. To further understand this resonance phenomenon,
we investigated the number of spins located at the impurity site r0 as a function of the impurity
energy. Figure 30 presents the absolute number of spins n↑(↓) as a function of impurity energy.
Actually, n↑(↓) is the difference between the number of spins at zero bias and the number of
spins at Vb = 1 V:

n↑(↓) = n↑(↓)(Vb = 1 V)− n↑(↓)(Vb = 0 V).

We find a feature similar to the spin-dependent current in figure 29. The number of down
electrons located on the impurity exceeds the number of up electrons at the impurity resonance.
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Figure 26. Spin transfer torque versus bias voltage Vb: (solid line) without impurities, (dotted
line) x0 = −2.5 Å at resonance, (dashed–dotted line) x0 = −2 Å at resonance, (dashed line)
x0 = −1.5 Å at resonance. The calculations have been performed at Vb = 1 V.

Figure 27. Absolute tunnel magnetoresistance versus impurity energy at Vb = 1 V and x0 = −2 Å.

The shape of n↑(↓) gives important information concerning the coupling process. n↑
presents a wider and lower Lorentzian-like curve than n↓. The width of the curve is due to the
coupling between spin-dependent states in the ferromagnets and metallic states of the impurity.
Consequently, the number of up-electrons located at the impurity site is distributed over a wider
energy range than down-electrons. Then, because the distribution of down-electrons over the
impurity energy range is narrower than up-electrons, at resonance there is a maximum of down-
electrons on the impurity site, and it exceeds the number of up-electrons. As a consequence,
the spin imbalance is increased and transverse spin current is maximum at resonance. An
equivalent interpretation is that the spin of an electron impinging on the impurity site precesses
around an effective exchange field [58]. The effective field located on the impurity originates
from the interaction between the external electrodes and the impurity.

We carry on our investigation focusing on the spin-dependent local density of state (LDOS)
of the spins at the location of the impurity. Figure 31 shows the energy-resolved LDOS for up
and down spins at x0 = −2 Å, Vb = 1 V and ER = −5.133 eV. It is shown that the peak of
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Figure 28. Comparison between the bias dependence of absolute TMR without impurities (dashed
line) and at STT resonance (solid line). The resonance is calculated at x0 = −2 Å and Vb = 1 V.

Figure 29. Spin-up (solid line) and spin-down (dotted line) current at θ = 90◦ versus impurity
energy at x0 = −2 Å and Vb = 1 V.

up-electrons is centred on the Fermi energy, whereas the peak of down-electrons is below the
Fermi energy. This means that the main contribution comes from electrons originating near the
Fermi energy and that the spin asymmetry comes from the down-electrons located just below
the Fermi energy.

We also notice that at the Fermi energy, spin-up and spin-down LDOS are equal. This is
confirmed by the impurity energy dependence of spin-dependent LDOS at Fermi energy shown
in figure 32.

As a comparison, the dotted vertical line in figure 32 represents the impurity energy
resonance for STT and the dashed vertical line the resonance of IEC (see correspondence in
figure 23). Calculating the spin asymmetry P = [D↑(EF)− D↓(EF)

]
/
[
D↑(EF)+ D↓(EF)

]
on the impurity site, at the Fermi energy, as a function of the impurity energy, we find an
interesting behaviour, reported in figure 33. We find that at STT resonance (dotted vertical
line), the Fermi electrons present a zero spin asymmetry, whereas at IEC resonance (dashed
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Figure 30. Number of up (solid line) and down (dotted line) electrons at the impurity location
versus impurity energy at x0 = −2 Å and Vb = 1 V.

Figure 31. Spin-dependent local density of states at the STT resonance versus electron energy at
x0 = −2 Å, ER = −5.133 eV and Vb = 1 V for spin-up (solid line) and spin-down (dotted line).

vertical line) this asymmetry reaches a maximum. Furthermore, as we noted previously, at STT
resonance IEC changes its sign, which corresponds to a change of sign of the spin asymmetry.

We can conclude that the resonance feature of STT can be explained considering the
contribution of the electrons located near the Fermi level, which is consistent with the previous
works [21]. IEC resonance is driven by the electrons close to the Fermi energy. This can be
understood considering the energy-resolved LDOS at IEC resonance in figure 34. We see that
the resonant peak of down electrons is centred on the Fermi level, whereas the peak of up
electrons is above the Fermi level. Thus, whereas IEC is usually attributed to the contribution
of all the electrons below the Fermi level, the resonance seems to be driven by electrons at the
Fermi energy.

These interesting features emphasize the possibility of dramatically increasing the spin
torque and interlayer exchange coupling by controlling the impurity doping of the insulating
barrier, and that it is possible to reduce IEC while increasing STT. However, because TMR
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Figure 32. Spin-dependent local density of state at the Fermi energy for up (solid line) and down
(dotted line) electrons versus impurity energy at x0 = −2 Å and Vb = 1 V. The vertical dotted line
and dashed line represent the energy of impurity-induced resonance for STT and IEC, respectively.

Figure 33. Spin asymmetry at the impurity location, at Fermi energy, calculated from figure 32.

has a resonance energy shifted from the STT resonance, it is not possible to increase both STT
and TMR.

5. Resonant spin torque in a double tunnel barrier

5.1. Introduction

As stated in the introduction, Slonczewski predicted in 1989 that the magnetizations of two
ferromagnetic layers separated by a thin tunnel barrier feel an interaction at zero bias voltage
resulting from the transfer of spin associated with the symmetric tunnelling of spin-polarized
electrons through the barrier [10]. Due to the relatively large critical current density required to
observe spin transfer effects ( jc ≈ 107 A cm−2), it has long been believed that these phenomena
could only be observed in metallic nanostructures. Indeed, magnetic tunnel junctions are
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Figure 34. Spin-dependent local density of states at the IEC resonance versus electron energy for
spin-up (solid line) and spin-down (dotted line).

voltage-limited since they undergo electrical breakdown when the barrier is exposed to too
large a bias voltage (of the order of 1 V for a 1 nm thick barrier corresponding to a breakdown
electrical field of the order of 109 V cm−1).

Recently, thanks to progress in the development of low resistance tunnel barriers
(resistance–area product below 10 � μm2) with large TMR amplitude, some experimental
groups have succeeded in observing spin torque effects in MTJ comparable to those observed
in metallic spin-valve pillars [17–19]. The critical current density for switching in MTJ
was found to be of the same order of magnitude (2 × 106–2 × 107 A cm−2) as in their
metallic counterparts. Various schemes are used to reduce the critical switching current density
such as using magnetic material with lower magnetization (for instance CoFeB [19]), or by
combining the effects of two reference layers in opposite magnetic states [18] as suggested by
Berger [59].

In this section, we propose another approach to drastically enhance the spin torque
efficiency based on the use of the resonant effect in double barrier magnetic tunnel junctions.
The system we are interested in consists of a central free layer (F) sandwiched between two
tunnel barriers (I1 and I2) themselves sandwiched between two ferromagnetic reference layers
with in-plane magnetization (F1 and F2). In this geometry, the central free layer forms a spin-
dependent quantum well. Under certain resonance conditions, we theoretically show that the
electrical current as well as the spin current through the system can be drastically increased,
yielding a correlative increase in the amplitude of the spin torque acting on the magnetization
of the F layer.

5.2. Theoretical model

Our model system consists of two thick (semi-infinite) ferromagnetic electrodes (F1 and F2)
connected to reservoirs with chemical potentials μ1 and μ2 and two non-magnetic insulating
tunnel barriers (I1 and I2) of thickness b separated by a thin free ferromagnetic layer (F) of
thickness a (see figure 35). The magnetizations of the outer electrodes are assumed to be pinned
in-plane in either antiparallel or parallel alignment and the magnetization of the middle layer
makes an angle θ with the direction of the F1 magnetization supposed to be parallel to the z-
axis. The x-axis is perpendicular to the plane of the layer. The y-axis is in plane, perpendicular
to the x- and z-axes.

30



J. Phys.: Condens. Matter 19 (2007) 165212 A Manchon et al

x

Figure 35. Schematic representation of energy potential seen by the tunnelling electrons in our
model system.

(This figure is in colour only in the electronic version)

Using the s–d model (see section 4), the one-electron Hamiltonian of the system in layer
α can be written in the following form:

H α =
(

p̂2(r)

2m
− Uα

)
−
∑

n

J αsd(r − Rn)
(
σ̂ Ŝαn
)

(5.1)

where p̂(r) is the momentum operator of the conduction electron, Jsd is the s–d exchange
constant, σ̂ are Pauli matrices and Ŝn is the operator associated with the localized spin located
at point Rn and responsible for the local magnetization. J αsd = 0 within the non-magnetic
tunnel barriers and J αsd �= 0 inside the ferromagnetic layers. α = 1, 2, . . . , 5 refers to the
index of the layers, Uα represents the energy associated with the bottom of the conduction
band in the ferromagnetic layers (α = 1, 3, 5) and the height of the barriers in the insulating
layers (α = 2, 4). The ferromagnetic layers are assumed to be in single domain states. The
two outer layers (F1 and F2) are in antiparallel (parallel) magnetic configuration whereas the
magnetization of the central one makes an angle θ with the F1 magnetization. The z-direction
is chosen as the spin quantization axis for the two outer F layers and the Pauli matrix σ̂ in the
central layer with tilted magnetization (α = 3) has to be transformed by the usual matrix of
rotation

T̂ =
[

cos θ2 − sin θ
2

sin θ
2 cos θ2

]
.

Finally, we consider that the electrons flowing from the left (right) reservoirs are
represented by Fermi distributions with chemical potentials μ1 (μ2) so that μ1 − μ2 = eV,
where V is the applied voltage. A schematic picture of the potentials of the structure is shown
in figure 35.

In order to calculate the electrical current and the components of the vectorial spin currents,
we need to solve the Schrödinger equation and may use the expressions for the currents in terms
of a transmission matrix (Landauer formalism), which is non-diagonal in spin-space in the case
of non-collinear alignment of magnetizations in the ferromagnetic layers.

However, a more transparent way to calculate both currents and torques is to use the non-
equilibrium Keldysh technique (as done in section 4), which allows us, in principle, to take
into account elastic and inelastic processes of electron scattering. In the present section, elastic
scattering in the F layer is not taken into account. In the rest of the section, we will use the
mean field approximation for the operator Ŝα , so that Ŝα is considered as a classical vector:
(Sz = S0 cos θ , Sy = S0 sin θ , Sx = 0).

31



J. Phys.: Condens. Matter 19 (2007) 165212 A Manchon et al

Figure 36. Torque calculated at a point of abscissa x = 0.8 nm located 0.1 nm from the I1/F
interface, as a function of the thickness a of the central F layer. The parameters used for the

calculation were k↑
F = 1.1 Å

−1
, k↓

F = 0.6 Å
−1

in the F layer, q0 = 0.93 Å
−1

in the barrier,
b = 0.7 nm. The outer electrodes were in antiparallel magnetic alignment.

In the case of an absence of scattering processes, the Keldysh Green functions can be
calculated in the simple form:

G−+(r, r) =
[

G−+
↑↑ G−+

↑↓
G−+

↓↑ G−+
↓↓

]
(5.2)

where G−+
σσ ′(x, x ′) has the form of (4.3):

G−+
σσ ′(x, x ′) =

∫
−→κ fL

(
�
σ(↑)
L (x,−→κ )�∗σ ′(↑)

L (x ′,−→κ )+�
σ(↓)
L (x,−→κ )�∗σ ′(↓)

L (x ′,−→κ )
)

d−→κ

+
∫
−→κ fR

(
�
σ(↑)
R (x,−→κ )�∗σ ′(↑)

R (x ′,−→κ )+�
σ(↓)
R (x,−→κ )�∗σ ′(↓)

R (x ′,−→κ )
)

d−→κ
(5.3)

where fL (respectively fR) are the Fermi distribution functions for the left (respectively
right) reservoir, �σ(α)

L(R)(x,
−→κ ) is the spinor (index σ ) wavefunction of the electron when an

electron with spin α, energy E and momentum −→κ in the yz-plane is injected from the left
(right) reservoir. We point out that for non-collinear alignment of the magnetizations in the
ferromagnetic layers, the indices σ and α may not coincide. This means that an electron with
an initial spin index α = ↑ (for example) undergoing partial reflection and partial penetration
into the F layer reaches an entangled state in which neither ↑ and ↓ components are equal to
0. The system of wavefunctions ψσ(α)L(R)(x, κ) is a full and orthogonal system of eigenfunctions.
The latter are normalized to the unit flow.

The currents and non-equilibrium magnetization can be calculated using the
expressions (4.10), (4.11) and (4.12). The wavefunctions ψσ(α)L(R)(x,

−→κ ) are determined
from (5.1) following the same procedure as in section 4.

Equation (5.3) clearly shows that the torque is an oscillatory function of the distance from
the I/F interface. This will be further illustrated below. In figure 36, the dependence of the
local torque on the thickness of the central ferromagnetic layer F is plotted at a particular
location in the middle layer (point of abscissa a = 0.8 nm located 0.1 nm from the I1/F
interface). The parameters used for the spin-dependent Fermi momenta in the ferromagnetic
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Figure 37. Total charge current through the system as a function of the thickness of the central F
layer. The parameters were the same as in figure 36.

layers are representative of the case of Ni (k↑
F = 1.1 Å

−1
, k↑

F = 0.6 Å
−1

). The damping

vector in the tunnel barrier is reasonable for alumina barriers (q0 = 0.93 Å
−1

). The calculation
was performed assuming antiparallel alignment of the magnetization of the outer layers. The
torque amplitude is expressed as the effective field (Heff in Oe) in (4.14). Very sharp peaks in
torque amplitude are observed with amplitudes exceeding 5 × 104 Oe. For comparison, in a
single barrier tunnel junction using the same parameters for the barrier and the F layer, the spin
torque amplitude at the same location would be only 200 Oe. However, these peaks occur over
an extremely narrow range of thickness corresponding to particular resonance conditions. In
materials such as magnetic semiconductors in which the Fermi wavelengths are much longer
than in transition metals (by two orders of magnitude), the peaks would occur over much
broader ranges of thickness.

Alternatively, with a transition metal, one way to reach the resonance condition could
consist in changing the Fermi momenta by adding non-magnetic impurities within the
ferromagnetic metal (Cu impurities introduced in Ni or NiFe for instance). The reason for
such high values is the resonant character of the torque and current for some definite values
of the middle layer thickness. This resonance character also shows up in the variation of the
charge current (i.e. the conductance of the system) as a function of the thickness of the central
F layer (see figure 37). A clear oscillatory behaviour is observed. The current has resonances
at values of the thickness a approximately equal k↑

F a = 2πn + φ0. The torque (figure 36)
has resonances at points a slightly shifted from the location of the resonances in the current.
The resonances in torque are much sharper than the oscillations of the current and they have
the form of a dispersion curve. Such behaviour may be explained by the fact that the four
contributions to the torque (see expression (5.3)) have different signs and exhibit some shifts
in the phase. This may be understood by considering that the contributions to the torque of
electrons with different spin or momentum directions have different signs.

Figure 38 shows the variation of the spin torque amplitude versus location along the x-axis
within the free central layer. The calculation was performed at conditions corresponding to
a resonance of the spin torque. It is interesting to note that in the resonance conditions, the
spatial variation of the torque is symmetric (left-right) within the free layer both in parallel and
antiparallel alignment of the magnetization in the outer electrodes. The average value of the
torque over the total thickness of the layer is not zero in antiparallel alignment but ≈900 Oe.
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Figure 38. Local variation of the torque amplitude versus location along the x-axis in the middle
free layer for parallel and antiparallel alignment of the magnetization in the two outer pinned
electrodes. The calculation is performed in resonance conditions (a = 1.06 nm, V = 0.3 V and for
the same parameters as in figure 36). Note that at resonance, the torque exhibits a symmetric profile
within the free layer.

Figure 39. Angular variation of the torque normalized by sin θ where θ is the angle between the
magnetization in the outer electrodes (supposed to be antiparallel) and the magnetization of the free
layer. The parameters used in the calculation were the same as in figure 36.

Furthermore, we investigated the dependence of the spin torque on the angle θ between
the magnetization in the free layer and in the outer magnetic electrodes supposed to be in
antiparallel magnetic alignment. Figure 39 shows the angular variation of the torque divided
by sin θ . A clear deviation from a constant value is observed as already discussed by other
authors [20].

6. Conclusion

As an introduction, we defined microscopically the spin transfer torque and current-driven
exchange coupling as being proportional to the transverse component of the effective local
magnetization, or spin accumulation. We applied this definition to three different kinds of
structure: metallic spin-valve, magnetic tunnel junction and double magnetic tunnel junction.
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We first proposed a universal model allowing the calculation of currents and torques in any
kind of metallic multilayered structure, for any kind of magnetization orientation. We showed
that the angular dependences of spin torque and normalized stack resistance are of the same
nature, which means that spin torque and magnetoresistance originate from the same physical
phenomenon, as suggested by recent experiments [60].

In a second step, we proposed a thorough study of spin torque and interlayer exchange
coupling in a magnetic tunnel junction with an amorphous barrier. We find that the averaged
spin torque and interlayer exchange coupling oscillate with the thickness of the layer. This
model also gives an important asymmetry in spin torque, as suggested by Slonczewski [21].
Finally, we showed that the interlayer exchange coupling can be of the same order as spin
torque in MTJ, depending on the barrier characteristics.

We then showed that introducing a layer of impurities inside the barrier induces spin-
dependent resonance states yielding a great enhancement of spin torque and interlayer exchange
coupling. The IEC also shows an inversion depending on the impurity energy and location, as
discussed in [49].

Finally, we proposed another way to increase spin torque, using double magnetic tunnel
junctions. We showed that a dramatic enhancement in spin torque amplitude can be obtained
in double junction systems when resonance conditions in the central free layer are fulfilled.
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Appendix A. Diffusion coefficients

The matrix Ân has the following structure:

An11 = An12 = An13 = An14 = γ x
n cos�n − γ z

n sin�n

rn

An15 = An16 = 1

rn

[(
γ x

n sin�n + γ z
n cos�n

)
(1 + β ′

nδn)− (β ′
n + δn)

]

An17 = 1

rn

[
1 − δn
(
γ x

n sin�n + γ z
n cos�n

)]

An21 = An22 = An23 = An24 = cos�n

rn

An25 = An26 = 1

rn

[
sin�n(1 + β ′

nδn)− γ x
n (β

′
n + δn)

]

An27 = 1

rn

(
γ x

n − δn sin�n
)

An31 = An32 = An33 = An34 = i

rn
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An35 = An36 = An37 = 0

An41 = An42 = An43 = An44 = − sin�n

rn

An45 = An46 = 1

rn

[
cos�n(1 + β ′

nδn)− γ z
n (β

′
n + δn)

]

An47 = γ z
n − δn cos�n

rn

An51 = −An52 = − cos�n+1kn+11
1 − βn+1δn+1

ρn

An53 = −An54 = − cos�n+1kn+12
1 − βn+1δn+1

ρn + 1

An55 = −An56 = sin�n+1kn+13
(
β ′2

n+1 − 1
) 1 − βn+1δn+1

ρn+1

An57 = 0

An61 = −An62 = −ikn+11
1 − βn+1δn+1

ρn+1

An63 = −An64 = −ikn+12
1 − βn+1δn+1

ρn+1

An65 = An66 = An67 = 0

An71 = −An72 = sin�n+1kn+11
1 − βn+1δn+1

ρn+1

An73 = −An74 = sin�n+1kn+12
1 − βn+1δn+1

ρn+1

An75 = An76 = cos�n+1kn+13
(
β ′2

n+1 − 1
) 1 − βn+1δn+1

ρn+1

An77 = 0.

The matrix B̂n has a similar structure:

Bn11 = Bn12 = ekn1 tn

rn

(
γ x

n cos�n − γ z
n sin�n

)

Bn13 = Bn14 = ekn2 tn

rn

(
γ x

n cos�n − γ z
n sin�n

)

Bn15 = Bn16 = ekn3 tn

rn

[(
γ x

n sin�n − γ z
n cos�n

) (
1 + β ′

nδn
)− (β ′

n + δn
)]

Bn17 = 1

rn

[
1 − δn
(
γ x

n sin�n + γ z
n cos�n

)]

Bn21 = ekn1tn cos�n

(
1

rn
+ kn1

1 − βnδn

ρn

)

Bn22 = e−kn1tn cos�n

(
1

rn
− kn1

1 − βnδn

ρn

)

Bn23 = ekn2tn cos�n

(
1

rn
+ kn2

1 − βnδn

ρn

)

Bn24 = e−kn2tn cos�n

(
1

rn
− kn2

1 − βnδn

ρn

)
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Bn25 = ekn3tn

{
1

rn

[
sin�n
(
1 + β ′

nδn
)− γ x

n

(
β ′

n + δn
)]− kn3 sin�n

(
β ′2

n − 1
) 1 − βnδn

ρn

}

Bn26 = e−kn3tn

{
1

rn

[
sin�n
(
1 + β ′

nδn
)+ γ x

n

(
β ′

n + δn
)]+ kn3 sin�n

(
β ′2

n − 1
) 1 − βnδn

ρn

}

Bn27 = 1

rn

(
γ x

n − δn sin θn
)

Bn31 = iekn1tn

(
1

rn
+ kn1

1 − βnδn

ρn

)

Bn32 = ie−kn1tn

(
1

rn
− kn1

1 − βnδn

ρn

)

Bn33 = −iekn2tn

(
1

rn
+ kn2

1 − βnδn

ρn

)

Bn34 = −iekn2tn

(
1

rn
− kn2

1 − βnδn

ρn

)

Bn35 = Bn36 = Bn37 = 0

Bn41 = −ekn1tn sin�n

(
1

rn
+ kn1

1 − βnδn

ρn

)

Bn42 = −e−kn1tn sin�n

(
1

rn
− kn1

1 − βnδn

ρn

)

Bn43 = −ekn2tn sin�n

(
1

rn
+ kn2

1 − βnδn

ρn

)

Bn44 = −e−kn2tn sin�n

(
1

rn
− kn2

1 − βnδn

ρn

)

Bn45 = ekn3tn

{
1

rn

[
cos�n

(
1 + β ′

nδn
)− γ z

n

(
β ′

n + δn
)]− kn3 cos�n

(
β ′2

n − 1
) 1 − βnδn

ρn

}

Bn46 = ekn3tn

{
1

rn

[
cos�n

(
1 + β ′

nδn
)− γ z

n

(
β ′

n + δn
)]+ kn3 cos�n

(
β ′2

n − 1
) 1 − βnδn

ρn

}

Bn47 = 1

rn

(
γ z

n − δn cos�n
)

Bni j = Ani j (n + 1 ⇒ n)

R̂n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cn8

{
tn
rn

[
1 − δn
(
γ x

n sin�n + γ z
n cos�n

)]− 1−βnδn

ρn

}
− Ex

2ρn

cn8

[
sin�nβ

′
n

1−βnδn

ρn
+ tn

γ x
n −δn sin�n

rn

]
− βn sin�n Ex

2ρn

cn8

[
cos�nβ

′
n

1−βnδn

ρn
+ tn

γ z
n −δn cos�n

rn

]
− βn cos�n Ex

2ρn

sin�n
ρn

[
βn Ex

2 − cn8β
′
n (−1βnδn)

]
− sin�n+1

ρn+1

[
βn+1 Ex

2 − cn+18β
′
n+1 (1 − βn+1δn+1)

]
cos�n
ρn

[
βn Ex

2 − cn8β
′
n (−1βnδn)

]
− cos�n+1

ρn+1

[
βn+1 Ex

2 − cn+18β
′
n+1 (1 − βn+1δn+1)

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where tn = xn+1 − xn is the thickness of the nth layer.
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Appendix B. Spin-dependent wavefunctions in a clean MTJ

Some functions which will be used in the description of the wavefunctions are first defined:

q2
0 = 2m

h̄2 (U − EF)

q(x) =
√

q2
0 − 2m

h̄2

(
x − x1

x2 − x1
eV − ε

)
+ κ2

q1 = q(x1)

q2 = q(x2)

k1(2) =
√(

k↑(↓)
F

)2 − 2m

h̄2
ε − κ2

k3(4) =
√(

k↑(↓)
F

)2 − 2m

h̄2 (ε − eV )− κ2

E(xi , x j ) = exp
∫ x j

xi

q(x) dx

En = E(x1, x2)

where EF is the Fermi energy, U is the height of the barrier, V is the bias voltage and
ε = EF − E , E being the energy of the tunnelling electron. We define:

�(q1, ki , q2, k j) = En(q1 − iki)(q2 − ik j)− E−1
n (q1 + iki)(q2 + ik j)

φ(q1, ki , q2, k j) = En(q1 + iki)(q2 − ik j)− E−1
n (q1 − iki)(q2 + ik j)

Den = �(q1, k1, q2, k3)�(q1, k2, q2, k4)(1 + cos θ)

+ �(q1, k2, q2, k3)�(q1, k1, q2, k4)(1 − cos θ)

r↑
1 = 1

Den
[φ(q1, k1, q2, k3)�(q1, k2, q2, k4)(1 + cos θ)

+ φ(q1, k1, q2, k4)�(q1, k2, q2, k3)(1 − cos θ)]
r↑

3 = 1

Den
[φ(q2, k3, q1, k1)�(q1, k2, q2, k4)(1 + cos θ)

+ φ(q2, k3, q1, k2)�(q1, k1, q2, k4)(1 − cos θ)].
Electrons originally in the left electrode have the following wavefunctions along the

structure:

�
↑(↑)
L (−∞ < x < x1) = 1√

k1

[
eik1(x−x1 ) − r↑

1 e−ik1(x−x1 )
]

�
↓(↑)
L (−∞ < x < x1) = 8q1q2

√
k1(k3 − k4) sin θ

Den
e−ik2(x−x1 )

�
↑(↑)
L (x1 < x < x2) = 2

iDen

√
k1q1

q(x)

{
E(x2, x)

[
�(q1, k2, q2, k4)(q2 + ik3)(1 + cos θ)

+ �(q1, k2, q2, k3)(q2 + ik4)(1 − cos θ)
]

+ E−1(x2, x)[�(q1, k2, q2, k4)(q2 − ik3)(1 + cos θ)

+ �(q1, k2, q2, k3)(q2 − ik4)(1 − cos θ)]}
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�
↓(↑)
L (x1 < x < x2)

= 4q2

Den

√
k1q1

q(x)
(k3 − k4) sin θ

[
E(x1, x)(q1 − ik2)+ E−1(x1, x)(q1 + ik2)

]

�
↑(↑)
L (x2 < x < ∞) = 4

iDen

√
k1q1q2
[
eik3(x−x2 )�(q1, k2, q2, k4)(1 + cos θ)

+ eik4(x−x2 )�(q1, k2, q2, k3)(1 − cos θ)
]

�
↓(↑)
L (x2 < x < ∞)

= 4

iDen

√
k1q1q2
[
eik3(x−x2 )�(q1, k2, q2, k4)− eik4(x−x2 )�(q1, k2, q2, k3)

]
sin θ.

Electrons originally in the right electrode have the following wavefunctions along the
structure:

�
↑(↑)
R (−∞ < x < x1) = 8

iDen

√
q1q2k3�(q1, k2, q2, k4) cos

θ

2
e−ik1(x−x1 )

�
↓(↑)
R (−∞ < x < x1) = 8

iDen

√
q1q2k3�(q1, k1, q2, k4) sin

θ

2
e−ik2(x−x1 )

�
↑(↑)
R (x1 < x < x2) = 4

iDen

√
k3q2

q(x)
�(q1, k2, q2, k4)

× cos
θ

2

[
E(x1, x)(q1 − ik1)+ E−1(x1, x)(q1 + ik1)

]

�
↓(↑)
R (x1 < x < x2) = 4

iDen

√
k3q2

q(x)
�(q1, k1, q2, k4)

× sin
θ

2

[
E(x1, x)(q1 − ik2)+ E−1(x1, x)(q1 + ik2)

]

�
↑(↑)
R (x2 < x < ∞) = cos

θ

2

1√
k3

[
e−ik3(x−x2 ) − r↑

3 eik3(x−x2 )
]

+ sin
θ

2

sin θ√
k3

8q1q2k3(k1 − k2)

Den
eik4(x−x2 )

�
↓(↑)
R (x2 < x < ∞) = sin

θ

2

1√
k3

[
e−ik3(x−x2 ) − r↑

3 eik3(x−x2 )
]

− cos
θ

2

sin θ√
k3

8q1q2k3(k1 − k2)

Den
eik4(x−x2 ).

To obtain �↓(↓) and �↑(↓) from �↑(↑) and �↓(↑), θ must be replaced by −θ and k1 (k3)
by k2 (k4) in the above formulae.

Appendix C. Equilibrium Green functions

We only give here the Green functions which appear in appendix D. Advanced Green functions
G A are the conjugated complexes of retarded Green functions G R .

G R
0↑↑(x0, x) = −eik1(x−x1 )

Den

√
q1

q(x0)

{
E(x2, x0)

[
�(q1, k2, q2, k3)(q2 + ik4)(1 − cos θ)

+ �(q1, k2, q2, k4)(q2 + ik3)(1 + cos θ)
]
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+ E−1(x2, x0)[�(q1, k2, q2, k3)(q2 − ik4)(1 − cos θ)

+ �(q1, k2, q2, k4)(q2 − ik3)(1 + cos θ)]
}

= G R
0↑↑(x, x0)

G R
0↓↑(x0, x) = 2 sin θ(k3 − k4)q2

iDen
e−ik1(x−x1 )

×
√

q1

q(x0)
{E(x1, x0)(q1 − ik2)+ E−1(x1, x0)(q1 + ik2)} = G R

0↑↓(x, x0)

G R
0↑↑(x0, x0) = − 1

2Denq(x0)
{E(x2, x0)[�(q1, k2, q2, k3)(q2 + ik4)(1 − cos θ)

+ �(q1, k2, q2, k4)(q2 + ik3)(1 + cos θ)]
+ E−1(x2, x0)[�(q1, k2, q2, k3)(q2 − ik4)(1 − cos θ)

+ �(q1, k2, q2, k4)(q2 − ik3)(1 + cos θ)]}
× {E(x1, x0)(q1 − ik1)+ E−1(x1, x0)(q1 + ik1)}

G R
0↓↑(x0, x0) = sin θ(k3 − k4)

2iDenq(x0)

[
E(x1, x0)(q1 − ik2)+ E−1(x1, x0)(q1 + ik2)

]
× [E(x1, x0)(q1 − ik1)+ E−1(x1, x0)(q1 + ik1)

]
.

To obtain the G R
0↑↓ from G R

0↓↑, we must replace k1 (k3) by k2 (k4) and θ by −θ . To obtain
the G R

0↓↓ from G R
0↑↑, we must replace k1 (k3) by k2 (k4) only.

Appendix D. Out of equilibrium Green functions

The non-equilibrium advanced Green functions are the complex conjugates of non-equilibrium
retarded Green functions. Advanced Green functions have the following expressions:

G A
↑↑(x0, x) = 1

Den∗{G A
0↑↑(x0, x)

(
1 − W G A

0↓↓(r0, r0)
)+ W G A

0↑↓(r0, r0)G
A
0↓↑(x0, x)}

G A
↓↑(x0, x) = 1

Den∗{G A
0↓↑(x0, x)

(
1 − W G A

0↑↑(r0, r0)
)+ W G A

0↓↑(r0, r0)G
A
0↑↑(x0, x)}

Den = [1 − W G R
0↑↑(r0, r0)

] [
1 − W G R

0↓↓(r0, r0)
]− W 2G R

0↑↓(r0, r0)G
R
0↓↑(r0, r0)

Gα
σσ ′(r0, r0) = a2

0

2π

∫ 2
√
π/a0

0
Gα
σσ ′,κ (x0, x0)κdκ.

The other non-equilibrium Green functions are obtained symmetrically. Den∗ signify
integration over κ of Den.
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